除了舆图标准问题外,定位也是面临难题。
舆图和定位是一体的,没有高精度定位,高精度舆图毫无意义。

L3/L4自动驾驶何时到来绝对定位是瓶颈

  有关无人车的定位有两种,一种称之为绝对定位,不依赖任何参照物和任何先验信息,直接给出无人车相对地球坐标或者说WGS84坐标系,也便是坐标(B,L,H),个中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。
另一种是相对定位,即有参照物或先验信息的定位。
有像Mobileye这样的视觉众包定位REM,视觉对光芒变革很敏感,光芒每时每刻都在变革,数据的同等性险些不可能,逆光与背光完备不一样,某国产轿车逆光下ADAS系统险些完备失落效,因此准确度很低。
也有基于激光雷达先验信息的定位,准确度极高,但本钱也极高,且不可能大范围(几百公里)利用。
此外,相对定位无法与标准的高精度合营利用,两者的坐标系、数据格式、接口、韶光轴完备不同,标准的传统高精度舆图必须有绝对定位。

图片来源:百度网

  绝对定位是不可短缺的,特殊是全局方案。
而目前绝对定位只能用卫星定位,而卫星定位除了QZSS,别的都无法做到自动驾驶的车道级定位。
这是L3/L4的瓶颈之一。

  卫星定位系统的英文是 Global Navigation Satellite System (GNSS),虽然直接翻译过来是导航卫星系统,但它真正供应的能力是定位,能定位后,导航就变得相对大略了。
卫星定位的事理,是利用卫星播发韶光旗子暗记,当设备吸收到后,可以根据旗子暗记发射韶光和本地韶光,打算出旗子暗记传输韶光,再结合光速得到卫星-设备间隔。

  有了多颗卫星的旗子暗记,可以列出一组方程,求解 4个未知数:设备的三维坐标 x/y/z,以及本地韶光与 GNSS 系统的韶光差。

  公式中的代表卫星 j 的三维坐标,这个坐标可以通过卫星星历打算得到。
星历是描述卫星运行轨道的一组参数,卫星轨道是一个椭圆,通过几个参数和韶光,可以唯一确定卫星的准确位置。

  星历的获取有两种办法,一种是卫星直接播发,这种办法的好处是定位过程不依赖卫星旗子暗记以外的任何输入,纵然没有网络也可以定位成功,但问题是卫星链路带宽很小,要下载完全星历,须要 30 秒旁边的韶光,早期的手机和一些车载设备定位过程很慢,便是由于这个缘故原由。
另一种办法,是通过互联网播发,这种办法叫 A-GNSS,详细的传输协议叫 SUPL (Secure User Plane Location),这种数据一样平常不对运用层透出,在手机上,操作系统会在底层定时要求 SUPL 数据,然后将得到的星历注入 GNSS 芯片。
有了 A-GNSS,设备就可以在秒级得到定位,不须要任何等待过程,目前所有的手机都支持这种办法。
A-GNSS 的做事供应商,紧张是通信运营商,以及一些定位做事商,比如谷歌、千寻位置等。

  卫星不间断地向地面广播旗子暗记,这个旗子暗记紧张包括以下信息:

1、卫星编号。
用于从星历中查找卫星轨道,再结合韶光戳获得当前卫星位置

2、当前韶光戳。
用于得到卫星位置,另一方面打算伪距。
伪距是(本地韶光-旗子暗记发射韶光)光速,之以是叫伪距,是由于本地韶光与卫星韶光不同步,以是这个间隔并不是真正的设备-卫星间隔。
须要精度很高的时钟。

3、星历数据。
用于打算卫星位置。

  像其他所有的通信技能一样,这些信息也因此报文的形式发送的,以 GPS 为例,卫星会每隔 6 秒发出一个包,而这个包会分解为数据位-CA 码序列-载波波形,通过天线发射到地面。
地面设备持续锁定卫星,在解算时,打算每颗卫星当前时候的韶光戳(用最近一次收到的韶光戳加上报文偏移量),然后进行位置解算。

  星历是描述卫星运行轨道的一组参数,卫星轨道是一个椭圆,通过几个参数和韶光,可以唯一确定卫星的准确位置。
载波的频率是 1.5G 旁边,波长 20 厘米旁边,比移动通信的波长稍长一些,以是旗子暗记的穿透性还是比较好的(波长越长,越随意马虎绕开障碍物),可以穿透比较薄的墙壁或屋顶,以是在一些情形下纵然无法直接看到天空,也是能定位的。
但是卫星旗子暗记是从上往下,在室内很难穿越多层建筑。

  有个关键数据叫卫星仰角,如果仰角不超过48度,卫星发出的旗子暗记由于受地面高层建筑物的遮挡,实际只能覆盖城市情积的30%,不仅覆盖面积小,且定位精度也低。
而日本的“QZSS准天顶卫星”的仰角在70度(东京地区达85度),覆盖率可达120%。
在中国,北斗紧张考虑南方较多,在南方的高仰角北斗卫星较多,自动驾驶就好做一些。

  卫星旗子暗记从发射到被设备吸收,须要经由大气层,个中,大气电离层有数千公里厚,这部分大气非常稀薄,但是存在大量被电离的电子,这部分电子会让电磁波变慢一点,从而产生延迟。
在对流层,也会产生一定的延迟。
在地表附近,由于各种建筑、山体、水面的影响,卫星旗子暗记可能被反射或折射(多径效应),产生延迟。

  在卫星旗子暗记发射侧和吸收侧,也有很多系统干系的偏差,比如时钟偏差、处理延迟等,这些延迟加上传输延迟,使得卫星旗子暗记的传输韶光,并不是准确的即是物理间隔/光速,另一方面,卫星的星历也有偏差,卫星位置和真实位置存在偏差,终极造成了定位结果产生偏差。

要提升定位精度,须要想办法肃清这些偏差,紧张有以下几种方案。

一、双星(双模)GNSS

  这里不是GPS双频。
GPS双频定位是指同时利用GPS的L1波段和L5波段进行定位的技能,实际该当叫双波段。
双频定位只能肃清电离层偏差,无法肃清如多径偏差等,因此在空旷环境下可以提高定位精度,在城市建筑密集区定位精度提升估量不明显。
这个很随意马虎稠浊,现在又提出多频,即Multi Frequency Global Navigation Satellite System。
还有多波段。

  所谓的"双星或多星或多频"定位,便是同时利用GPS和GLONASS或GPS和BEIDOU来进行定位。
欧洲人表示不服,为什么没有Galileo?技能上讲,"双星"可以是GPS、GLONASS、Beidou、Galileo中任意两种的组合。
但是经由长期测试,大家都知道谁好谁坏了,因此实际中一样平常用的是GPS+GLONASS,或者GPS+Beidou(紧张是海内涵用),性能和成熟度等方面 GPS>GLONASS>Beidou>Galileo。
还有三星定位同时利用GPS+GLONASS+Beidou进行定位。
"双星"或"三星"定位的好处:可以增加系统冗余,在同一时候同一位置可以搜索到更多的卫星,从而可以提高定位精度。

  GPS、GLONASS、BDS、Galileo都采取自己的韶光和坐标系统,不同系统见不雅观丈量的韶光和坐标系统有差异,要进行坐标转换,并虚求解不同系统韶光的偏差,因此多引入一个导航系统就须要多增加一个求解参数。
不过这个纯粹是数学算法,基本不增加本钱。
但是射频、变频、天线和基带都须要特殊设计,北斗加GPS的频点靠近,基本只须要改基带的软件。
但GLONASS弗成,须要经由不同的变频通道变换到中频,这会大大增加本钱。
射频是中国的弱项,由于这须要长期的履历积累,双模多模GNSS基本上被NovAtel垄断,NovAtel一样平常只供应板卡,整机大概要1.2-2万元公民币不等,板卡有3、6、7三个系列,现在主推的都是7系列,范例如OEM719板卡,价格大约700-800美元(近期彷佛有涨价),顺便说下,北斗星通是NovAtel板卡紧张经销商。

  量产车未有利用双频GNSS的,由于价格有点高了。

  常日只有demo无人车才会用双模GNSS吸收机,例如百度一贯用NovAtel的ProPak6,天线是NovAtel GPS-703-GGG-HV,现在ProPak6是老产品,打折后大约要2万公民币。

NovAtel的ProPak6,图片来源:NovAtel

  单点双频可做到1.2米级的定位,RMS是1 sigma或1倍标准差,如果结果是无偏的,概率为67%。
也便是说67%的情形下定位可到1.2米,别的情形就做不到了,可能是2米,也可能3米。
缺陷便是太贵了,还有装一个露在表面的天线,这恐怕是量产车无法接管的。

  特斯拉里的定位是GPS模块是NEO-M8L-01A-81,水平精度圆概率偏差(CEP)为2.5米,有SBAS赞助下是1.5米,吸收GPS/QZSS/GLONASS/北斗,CEP和RMS是GPS的定位准确度(俗称精度)单位,是偏差概率单位。
就拿2.5M CEP说吧,意思因此2.5M为半径画圆,有50%的点能打在圆内,也便是说,GPS定位在2.5M精度的概率是50%,相应的RMS(66.7%)2DRMS(95%)。
当然很多商家为了参数好看,只给出CEP。
实际95%概率情形下是6米精度,有SBAS赞助95%概率是3.6米精度。
已经远超一个车道了。
冷启动26秒,热启动1秒,赞助启动3秒。
显然,这是无法实现车道级定位的。

二、地基/星基增强(SBAS)

  星历偏差、卫星时钟偏差、乃至是电离层和对流层偏差都是可以不雅观测或建模的,一旦打算出了实时的偏差值,就可以通过一个单独的通道进行播发,吸收设备在定位过程中利用这些改动项,就可以提升定位精度。
播发的通道一样平常有两种,一种是直接通过卫星播发,称为 SBAS(Satellite-Based Augmentation System),好处是覆盖广,但设备须要增加额外的旗子暗记吸收通道;常日须要专用卫星。
另一种是地基增强,比如通过移动互联网,这须要设备具备联网能力。
这就意味着有通讯带宽和延迟的问题,还有移动旗子暗记强弱的影响。

  这些增强办法对付精度提升是有限的,还是有很多偏差项无法肃清,比如电离层偏差。

三、RTK

  RTK 是 Real-time kinematic 的缩写,是一种差分定位。
其事理是利用一个参考站供应基准不雅观测值,然后用设备的不雅观测值与基准站的不雅观测值进行差分,差分后可以消散落星历偏差、卫星钟差、电离层偏差,再进行星间差分后可以进一步肃清掉设备的钟差,终极可以算出设备相对基准站的相对坐标,如果基准站位置已知,就可以完成准确的绝对坐标,精度可以达到厘米级乃至毫米级。

  RTK 能提升精度的另一个缘故原由是引入了载波相位不雅观测,比较伪距不雅观测值,载波相位不雅观测值的偏差更小。
利用 RTK,须要在附近 20km 内有参考站(间隔太远,电离层偏差不一样,做差分无法完备肃清偏差),同时须要持续不断地得到参考站的不雅观测数据(一样平常通过互联网传输,利用 RTCM 协议),因此相对普通的定位,RTK 定位本钱较高。
RTK 做事一样平常由专业做事商供应,如千寻位置、六分科技,这些做事商在全国范围内支配了数千个基准站,持续对订阅用户播发数据。

  不过RTK也有缺点,那便是播发数据一样平常要依赖无线通信网,也便是手机。
4G的延迟一样平常在165毫秒以上,已经难以做高精度定位,5G会比较好。
常日RTK都是和地基增强在一起,即CORS(Continuous Operation Reference Stations )即连续运行参考站系统,网络CORS主流技能有四种,分别是VRS、主辅站技能(i-MAX)、区域改正参数(FKP)技能和综合偏差内插法技能。
个中VRS技能市场霸占率最高,是目前公认的主流,VRS由天宝公司发明。
南方公司则对VRS进行了改进,命名为NRS,实质上还是VRS。

  RTK缺陷也是很明显的。
RTK确定整周模糊度的可靠性为95~99%,在稳定性方面不及全站仪,这是由于RTK较随意马虎受卫星状况、景象状况、数据链传输状况影响的缘故。
首先,GPS在中、低纬度地区每天总有两次盲区(中国一样平常都是不才午),每次20~30分钟,盲区时卫星几何图形构造强度低,RTK丈量很难得到固定解。
其次,白天中午,受电离层滋扰大,共用卫星数少,因而初始化韶光长乃至不能初始化,也就无法进行丈量。
根据实际履历,每天中午12点~13点,RTK丈量很难得到固定解。

四、PPP定位

  PPP (precise point positioning) 的事理是对每一种偏差进行准确建模,终极求解出卫星和设备之间的准确间隔。
为了确定准确的偏差,PPP 定位时须要不断的迭代内部参数,而且,一些卫星的偏差只有当卫星位置变革后才能表示出来,以是 PPP 须要比较长的收敛韶光,一样平常须要 30 分钟才能收敛到空想的精度,显然这无法用在汽车领域。

五、QZSS

图片来源:ASBC

  早在1972 年,当时的日本电波研究所(现为信息与通信研究所) 就提出了准天顶卫星系统的观点,论证了这种系统很适宜日本这样地处中纬度、国土狭长的国家;2002年11月1日正式成立了新卫星商业公司Advanced Space Business Corporation (ASBC),共有43家企业出资,三菱电机公司、 日立制作所和丰田汽车公司等7家企业持股占77%。

  但是事情并不顺利,末了还是由日本政府内务省出面接管QZSS项目。
日本政府接管后,在2010年9月11日,发射第一颗卫星Michibiki,2011年6月1日,正式供应导航做事。
2017年6月1日,发射第二颗卫星,2017年8月10日,发射第三颗卫星,2017年10月10日,发射第四颗卫星。
日本操持在2023年,将QZSS的导航卫星数量增加为7颗,届时将不再依赖美国GPS,即可供应位置信息。
2023年-2026年,不加任何地基增强的空间旗子暗记测距偏差为2.6米,2027年-2036年,偏差为1米,2036年往后,偏差为0.3米。

图片来源:JAXA

  QZSS之以是能实现高精度定位,紧张来自两个信道的增强,一个是L1-SAIF,另一个是LEX。

图片来源:QZSS

  L1-SAIF可以达到亚米级精度,一样平常来说,最高38厘米。
LEX可以达到2厘米精度。

图片来源:QZSS

  L1-SAIF不仅包含时钟纠正、轨道纠正、电离层纠正,还包括有首次定位加速,同时还有日本本土大约1200个GPS地面不雅观测站网络点的GEONET数据。
L1-SAIF的码率为250bps。
QZSS的LEX信息格式,数据为1695字节,包头为49字节,包尾为256字节的里德所罗门校验纠错码。
LEX的旗子暗记调制,short code的韶光只有4毫秒,平方波则比较长,有820毫秒。
也便是说星历的吸收从30秒缩到10毫秒旁边。
目前的GPS吸收机可以吸收到QZSS旗子暗记,但无法解调出LEX信息。
不过只须要在软件上做改动,即可实现这个功能。

  QZSS吸收上不须要增加任何硬件本钱,只增加软件本钱,苹果手机就支持QZSS。

  QZSS廉价、高效、广播办法没有带宽的瓶颈,也没有延迟,是最适宜自动驾驶的一种技能。
日本事土狭长,7颗星覆盖率就可超过100%,对中美这样的大方块国家,恐怕得几十颗低轨道卫星。
这种根本事情,恐怕最少要花十年以上的韶光才能决策批准并履行。

六、天宝RTX

  Trimble RTX技能得益于在GNSS定位领域30多年的技能积累,Trimble在2011年推出了环球精密定位做事(RTX),并且逐步完善定位做事性能。
Trimble RTX环球跟踪基站网络在环球支配了120个旁边的跟踪基站,对GNSS不雅观测值进行实时跟踪和存贮,将GNSS不雅观测值实时发送给分别位于欧洲和美国的掌握中央,掌握中央对全星座精密卫星轨道、钟差和大气建模,得到环球精密定位改正数。
环球精密位置改正数通过L波段卫星(天宝自己的卫星)或者网络的办法广播给做事授权的终端用户。

图片来源:Trimble

  范例运用便是凯迪拉克的超级巡航。
天宝RTX分为4个等级,价格各不相同,硬件差别比较小。
凯迪拉克用的可能是ViewPoint RTX,且凯迪拉克由于没有利用天宝的L2波段卫星通讯,估计做事费很低,一年估计几十美元,乃至更低。
如果利用天宝的L2波段卫星,像CenterPoint每年的用度大约2-3千美元。
精度可以做到厘米级定位。

  末了还要考虑GPS旗子暗记有丢失的可能,特殊是在高楼林立的市区。
这就须要加入IMU,惯性丈量单元。
IMU有两个浸染,一个是在GPS旗子暗记丢失或者很弱的情形下,暂时补充GPS留下的空缺,用积分法取得最靠近真实的定位。
以是市区的无人驾驶,惯性导航系统必不可少。
另一个浸染是合营激光雷达,GPS+惯性导航系统为激光雷达的空间位置和脉冲发射姿态供应高精度定位,建立激光雷达云点的三维坐标系。
可用于定位,与其他传感器领悟时,也须要统一到一个坐标系下。
定位是最常用的,通过 IMU、惯性导航系统、编码器和 GPS,得到一个预测的全局位置。
当激光雷达实时扫描单次的点云数据后,结合单次的点云数据进行匹配,并进行特色提取。
这些特色包括路沿、车道线、高度等周围点线面的特色。
对付高精度舆图,提取过特色与实时提取的特色进行匹配,终极得到精准的车本体速率,这是激光雷达的定位过程。

  高精度的IMU如百度阿波罗用的NovAtel IMU-IGM-A1,售价大约20万公民币。
当然可以不用这么贵的,高速自动驾驶很少建筑物遮盖,就基本不须要这么贵的IMU。

  卫星广播形式是自动驾驶高精度绝对定位的最佳选择,日本能做到,但中美这种幅员辽阔的大国利用本钱太高了。
退而求其次是CORS地面站增强,也便是千寻位置这种的,千寻的称为FindAUTO。

图片来源:千寻位置

  千寻位置推举的硬件组合如上图,一样平常来说至少STA8100级才能用于智能驾驶,STA8090只能用于智能网联,整机价格(包括4G)估计不超过2000元。
目前FindAUTO可能还没收做事费。
但是免费是不可能长久的。
参考千寻亚米级测绘定位做事FindM Pro,包年做事费是300元公民币,智能驾驶该当也是这个价。
当然这个价格里不包括4G联网用度。
这须要一贯保持4G在线,这笔用度是不低的,如果要做L3级自动驾驶,4G均匀200毫秒旁边的延迟,如果车时速是72公里,200毫秒便是4米,超出一个车道了,以是5G才能做L3级自动驾驶。

  再退一步是双模吸收机,缺陷是价格有点高了,基本上都上万了,或者用国产板卡,价格也要五六千旁边,性能就差不少了。
用在量产车上还是弗成。

  总体而言,千寻位置是最适宜中国国情的,不过要上L3自动驾驶,5G必不可少。

更多佐思报告

佐思 2021年研究报告撰写操持智能网联汽车家当链全景图(2021年4月版)

2021年佐思汽研6-7月活动

「佐思研究年报及季报」

主机厂自动驾驶

低速自动驾驶

汽车视觉(上)

汽车视觉(下)

商用车自动驾驶

新兴造车

汽车MLCC

汽车分时租赁

高精度舆图

汽车仿真(上)

汽车仿真(下)

汽车与域掌握器

APA与AVP

车用激光雷达

毫米波雷达

处理器和打算芯片

ADAS与自动驾驶Tier1

乘用车摄像头季报

HUD行业研究

驾驶员监测

汽车功率半导体

Radar拆解

OEM车联网

T-Box市场研究

汽车网关

车载语音

汽车线束、线缆

汽车智能座舱

人机交互

V2X和车路协同

汽车操作系统

L4自动驾驶

专用车自动驾驶

打算平台与系统架构

车载红外夜视系统

共享出行及自动驾驶

高精度定位

汽车OTA家当

汽车IGBT

座舱多屏与联屏

戴姆勒新四化

特斯拉新四化

大众新四化

比亚迪新四化

智能后视镜

华为新四化

四维图新新四化

燃料电池

AUTOSAR软件

座舱SOC

线控底盘

车载显示

路侧智能感知

自主品牌车联网

汽车数字钥匙

汽车云做事平台

无线通讯模组

ADAS/AD主控芯片

Tier1智能座舱(上)

Tier1智能座舱(下)

商用车车联网

Waymo智能网联络构

智能网联和自动驾驶基地

OEM信息安全

商用车ADAS

自动驾驶法规

传感器芯片

L2级自动驾驶

聪慧停车研究

汽车5G

TSP厂商及产品

合伙品牌车联网

汽车座椅

智能汽车个性化

新势力Top4

农机自动驾驶

矿山自动驾驶

ADAS数据年报

无人接驳车

翱翔汽车报告

模块化报告

港口自动驾驶

「佐思研究月报」

ADAS/智能汽车月报 | 汽车座舱电子月报 | 汽车视觉和汽车雷达月报 | 电池、电机、电控月报 | 车载信息系统月报 | 乘用车ACC数据月报 | 前视数据月报 | HUD月报 | AEB月报 | APA数据月报 | LKS数据月报 | 前雷达数据月报

购买报告请私信佐思汽研君(欢迎关注“”佐思汽车研究“公众号)